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BACKGROUND 
A significant amount of nutrients, including dietary fibers, proteins, minerals, and vitamins are present in 
legumes, but the presence of anti‐nutritional factors (ANFs) like phytic acid, tannins, and enzyme 
inhibitors impact the consumption of legume and nutrient availability. In this research, the effect of a 
physical process (sonication or precooking) and fermentation with Lactobacillus plantarum and 
Pediococcus acidilactici on ANFs of some legumes was evaluated. 

RESULTS 
Total phenolic contents were significantly (p<0.05) reduced for modified and fermented substrates 
compared to non‐fermented controls. Trypsin inhibitory activity (TIA) was reduced significantly for all 
substrates except for unsonicated soybean and lentil fermented with L. plantarum and P. acidilactici. 
When physical processing was done, there was a decrease in TIA for all the substrate. Phytic acid content 
decreased for physically modified soybean and lentil but not significantly for green pea. Even though there 
was a decrease in ANFs, there was no significant change in in vitro protein digestibility for all substrates 
except for unsonicated L. plantarum fermented soybean flour and precooked L. plantarum fermented 
lentil. Similarly, there was change in amino acid content when physically modified and fermented. 

CONCLUSION 
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Abstract 

BACKGROUND 

A significant amount of nutrients, including dietary fibers, proteins, minerals, and vitamins are 

present in legumes, but the presence of anti-nutritional factors (ANFs) like phytic acid, tannins, 

and enzyme inhibitors impact the consumption of legume and nutrient availability. In this 

research, the effect of a physical process (sonication or precooking) and fermentation with 

Lactobacillus plantarum and Pediococcus acidilactici on ANFs of some legumes was evaluated. 

RESULTS 

Total phenolic contents were significantly (p<0.05) reduced for modified and fermented 

substrates compared to non-fermented controls. Trypsin inhibitory activity (TIA) was reduced 

significantly for all substrates except for unsonicated soybean and lentil fermented with L. 

plantarum and P. acidilactici. When physical processing was done, there was a decrease in TIA 

for all the substrate. Phytic acid content decreased for physically modified soybean and lentil but 

not significantly for green pea. Even though there was a decrease in ANFs, there was no 

significant change in in vitro protein digestibility for all substrates except for unsonicated L. 

plantarum fermented soybean flour and precooked L. plantarum fermented lentil. Similarly, 

there was change in amino acid content when physically modified and fermented. 

CONCLUSION 

Both modified and unmodified soybean flour, green pea flour, and lentil flour supported the 

growth of L. plantarum and P. acidilactici. The fermentation of this physically processed legume 

and pulse flours influenced the non-nutritive compounds, thereby potentially improving 

nutritional quality and usage.  
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1. Introduction 

 Legumes are plants in the Leguminosae family that includes beans, peas, lentils, 

chickpea, and soybean, and are grown worldwide. Around 73 million metric tons (MMT) of 

pulses are produced globally with dry beans (Phaseolus vulgaris), chickpea (Cicer arietinum), 

lentil (Len culinaris), and dry pea (Pisum sativum) accounting for about 52 MMT (1). There has 

been growing interest in the use of whole pulse, pulse flour, protein, starch, dietary fibers, and 

bioactive compounds for food and non-food applications. Cheaper pulse proteins and their 

derivatives can be substituted for animal-based protein and other essential nutritional 

components (2). Even though pulses have higher amount of proteins, dietary fiber, minerals, and 

vitamins in them, their use in food products is still not prevalent for the presence of off-flavor 

and several anti-nutritional factors (ANFs), for example, tannins, trypsin inhibitors, phytic acid, 

and flatulence causing compounds, mainly, stachyose, raffinose, and verbascose. Phytic acid 

chelates essential dietary minerals, protein, and starch, which then reduces their bioavailability in 

human. Tannins and trypsin inhibitors inhibit the digestive enzymes, thus reducing the digestion 

and absorption of dietary proteins and carbohydrates (3). 

Physical and biochemical processing favorably modify some physicochemical attributes 

of plant-based food ingredients, including pulses. Many traditional processes such as soaking at 

elevated temperatures, dehulling, boiling, germination, autoclaving, and microwave-assisted 

cooking are reported to impact the nutritional composition and anti-nutritional factors in pulses, 

for example, mung beans, white kidney beans, and cowpea (4). Thermal treatment at high 

temperatures has the potential to improve and enrich the nutritional quality of legumes. Physical 
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treatments for example, roasting (180ºC for 20 min), microwaving (850 W for 3 min), and 

boiling in water (30 and 60 min) were compared for yellow soybeans and green cotyledons; 

trypsin inhibitors were reported to reduce by minimum 50% for all physical treatments, and 

phytic acid reduced by 28% and 31% when boiled for 30 and 60 min, respectively (5). Hefnawy 

(6) utilized pressure cooking (121ºC for 35 min) and boiling (100ºC for 90 min) to reduce phytic 

acid (36-41%) tannins (29-36%), and trypsin inhibitors (93-94%) in lentils. ANFs like trypsin 

inhibitors, phytic acid, phenolics, and tannins are sensitive to heat and are reduced during 

processing. When exposed to thermal treatments, e.g., boiling or pressure cooking, ANFs in 

chickpea, dry beans, faba beans, dry peas, and lentils were reduced  increasing their digestibility 

and enhancing the nutritional profile (1) 

Fermentation is another simple and low-cost bioprocessing technology that has been used 

to enhance nutritional and quality aspects of food ingredients, reduce undesirable compounds 

and enrich with essential amino acids and vitamins (7). Controlled fermentation with specific 

microorganism is preferred to enhance the nutritional profile, texture, color, appearance, flavor, 

shelf life, and protein digestibility of ingredients, including pulses (8). Natural fermentation, on 

the other hand, relies on fermentation by naturally occurring microbes, which can be more than 

one, and possibly affecting uniformity in quality of ingredients and food products. 

Fermentation of legumes by microbes e.g., bacteria, yeast, and fungi has been reported in 

the literature that results in enhanced nutritional profile. Fermentation of chickpea with Rhizopus 

oligosporous for 72 h increased the protein content by 21.7% (9). Coda et al (10) showed that 

fermentation of faba bean flour with Lactobacillus plantarum reduced ANFs such as trypsin 

inhibitors and tannins by more than 40%. Similarly, fermentation of mucuna bean by B. subtilis 

reduced trypsin inhibitors and phenolic compounds (11). Fermentation caused a 72% reduction in 
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mucuna bean total oligosaccharides like stachyose, raffinose, and verbascose that cause 

flatulence. These reductions may be attributed to the secretion of hydrolytic enzymes like α-

galactosidase that is capable of hydrolyzing oligosaccharides and polysaccharides (3). 

Fermentation is an important processing technology for food ingredients because it improves 

sensory qualities, reduces pathogenic microorganisms, and enhance functional and health 

beneficial effects of food (12). Fermentation makes hydrolysis of proteins easier and improves 

protein digestibility. The pH is reduced during fermentation which plays a role in enhancing 

proteolytic activities and protein breakdown into smaller peptides that can be easily digested (13). 

These bioactive peptides provides health benefits such as antihypertensive, antioxidant, and ACE 

(angiotensin I-converting enzymes) inhibitory activity (14,15). Additionally, fermentation of 

leguminous substrate can bring in probiotic/ prebiotic benefits in foods. Prebiotic rich lentils 

ingredients consisting of raffinose family oligosaccharides, sugar alcohols, resistant starch, and 

fructo-oligosaccharides showed improved insulin sensitivity in men with metabolic syndrome, 

displaced pathogen from rumen and gastrointestinal tract, and enhanced viability of lactobacilli 

and Bifidobacteria (16). Similarly, prebiotic benefits of fermented cowpea and black bean was due 

to the production of short-chain fatty acids suggesting improved intestinal health (17). 

There has been limited research on the modification of ANFs in pulse flours through physical 

processes like heat treatment or high-power sonication followed by fermentation. High-power 

sonication (HPS) is a relatively newer application in food processing industry and is mostly used 

for its disruption of cell matrices at higher intensities that could potentially render fermentation 

of substrates effective and more beneficial. When HPS (low frequency 16-100 kHz and 10-1000 

W/cm2 power intensity) is applied to the aqueous medium, cavitation bubbles are formed and 

collapse leading to extreme temperatures that produce high shear and turbulence in localized 
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cavitation zones (18). Cavitations disintegrate substrate cellular matrices and facilitates the solvent 

extraction of constituents like protein, and sugar from plant cells; the use of high-power 

sonication increased the sugar release of defatted soy flakes by 50% compared to untreated 

flakes (19), which can be utilized in fermentation by microbes to modify and improve substrate 

characteristics. Thus, the specific objectives of this study were to 1) compare fermentation 

performance for L. plantarum and P. acidilactici in physically modified (precooked or sonicated) 

lentil and pea flours, and 2) evaluate the impact of these processes (physical modification and 

fermentation) on the nutrition and anti-nutrition constituents of the flours. Even though legume 

flours were fermented with probiotic bacteria, study on probiotic and prebiotic effects of 

resulting flours per se was not the focus of this reporting. 

2. Material and methods 

2.1 Flours and reagents 

Green pea seeds, lentil seeds, precooked lentil, and pea flours were provided by Dr. Donna 

Winham, Iowa State University (Ames, IA). Soy flour (80-90 PDI) was obtained from Archer 

Daniels Midland Company (Decatur, IL). De Man, Rogosa and Sharpe (MRS) media, ferric 

chloride hexahydrate, pancreatin, gallic acid, sulfosalicylic acid, polyvinyl-polypirrolidone 

(PVPP), and Folin Ciocalteu reagents were purchased from Fisher Scientific (Waltham, MA, 

USA). Benzoyl-DL,-arginine-p-nitoanalide hydrochloric (BAPA), and trypsin porcine pancreas 

were purchased from VWR (Chicago, IL). All the chemicals used were of analytical grade. 

2.2 Preparation of initial substrates  

Peas and lentils were processed into flours at North Dakota State University (Fargo, ND) in Dr. 

Clifford Hall’s research laboratory as follows. First, whole pulses were soaked in water (10-parts 

water 1-part pulse) overnight at 25ºC. Second, pulses were drained over a 40-mesh sieve (Gilson 
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Inc., Lewis OH), with any material passing through the screen discarded. Then, pulses were 

placed on perforated baking pans in single layers (approximately 0.45 kg per tray). Heat 

treatment-149ºC for 18 min (lentil) or 33 min (peas) - was carried out in a Baxter OV300G Mini 

Rotating Rack Convection Oven (Baxter Manufacturing Co., Orting WA). The pulses were 

stirred at five-minute intervals until the end of their heating times. The precooked pulses were 

then milled with a roller mill; flour particle size distribution for lentil showed that 3.4% was 

retained on 80 mesh sieves, and 28.5% retained on 100 mesh sieves with 61.1% passing through. 

Similarly, for pea flour, 5.1% was retained on 80 mesh sieves, and 61.6% retained on 100 mesh 

sieves with 33.3% passing through. These processed pulses are labeled as ‘precooked’ pulse 

flours in this report. 

Another set of whole peas and lentils were milled at Center for Crops Utilization Research 

Pilot Plant facility (Iowa State University, Ames, IA, USA) in a Witt corrugated roller mill (Witt 

Corrugating Inc., Wichita, KS), first by passing the beans through 0.03” gap rollers with 1/8” 

corrugation followed by passing through 0.02” gap rollers with 1/16” corrugation. Green pea and 

lentil were then ground by using a Nutri mill (Pleasant Hill Grain, NE, USA) operated at the 

‘fine’ setting, that resulted in final particle size average D (0.5) of 190 and 163 µm, respectively. 

These pulse flours obtained are labeled as ‘uncooked or raw’ in this report. Each flour slurry (1:8 

w/v substrate: water) of raw green peas, lentils, and soybean was sonicated for 2 and 4 min at 

100% amplitude (power density~ 2.5 W/mL) using a 2.2 kW sonicator (Branson 2000 Series, 

Branson Ultrasonics Corporation, Danbury, CT, USA). For precooked substrates, the slurry was 

maintained at 1:8 w/v substrate: water and autoclaved. The schematic diagram of the process, 

sampling, and analytics is shown in Figure 1. 

2.3 Microorganisms and fermentation 
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The bacterial strains Lactobacillus plantarum and Pediococcus acidilactici were provided by 

Lallemand Animal Nutrition-North America (Milwaukee, WI, USA); even though the strains are 

probiotic in nature (20) it was not our objective to evaluate probiotic impact of fermented 

ingredients. The microbes were stated to have a viable count of 2.5 x 1011 CFU per gram of dry 

product. Substrate slurries (precooked, sonicated, or control) were prepared with 1:8 w/v ratio 

(substrate: water), adjusted to pH 6.5, inoculated with Lactobacillus plantarum and Pediococcus 

acidilactici at 108 CFU/mL and fermented in shake flasks for 72 h at 37°C and 200 rpm. As 

suggested by the manufacturer, the powder bacterial strains were added directly into the pH-

controlled slurry; each fermentation slurry was added 0.5 g of powder in 250 mL of pH-

controlled water (pH-6.5) resulting in 5 x 108 CFU/ mL of microbes at the time of inoculation. 

The microbial cell growth and pH were measured at 6, 12, 24, 48, and 72 h. The microbial viable 

count was calculated by the serial dilution plate count method in a biosafety cabinet (21). The 

microbial growth was compared based on the specific growth rate (SGR) parameter, µ, 

calculated by plotting the logarithm of cell count during the exponential phase against the time. 

The resulting plot was fitted with a linear equation (Eq. 1). The slope of this line is the specific 

growth rate of a microorganism, µ. 

Ln (X) = µ t + Ln (X0)………..  (1) 

where X is number of cells at a given time t during the log phase, X0 is the initial number of cells 

at the beginning of the exponential phase. Doubling times for microbial growth (td) were 

calculated by dividing 0.693 by µ. All the fermentations were performed in duplicate and 

average values plotted/ analyzed. 

2.4 Evaluation of substrates and modified flours 

2.4.1 Proximate analyses 

This article is protected by copyright. All rights reserved.



www.manaraa.com

The proximate analyses of all legume samples (uncooked, precooked and fermented) was carried 

out using standard methods in the Plant Polymer Research Unit Lab (USDA-ARS, Peoria, IL). 

All the legume samples were dried flours. Moisture, crude protein (Dumas combustion % N × 

6.25), crude oil, and crude fiber contents were analyzed according to AOCS standard methods 

Ba 2a-38, Ba 4e-93, Am 5-04, and Ba 6-05, respectively (AOCS, 1997)(22). Ash contents were 

analyzed according to AOAC method 942.05 and carbohydrate content was calculated by 

difference (100 − % sum of other components). 

2.4.2 Total phenolic content 

The total phenolic content (TPC) was determined using the Folin-Ciocalteu assay with slight 

modification (23). Flour samples (0.5 g) were extracted with 7.5 mL 1% HCl in methanol for 2 h 

and centrifuged at 2000 x g and 25°C for 10 min. The supernatant extract (0.2 mL) was mixed 

with 0.6 mL of distilled water and 0.2 mL of Folin-Ciocalteu's phenol reagent (1: 1 v/v reagent: 

distilled water). One milliliter of saturated sodium carbonate solution (8% w/v in water) was 

added after 5 min and the volume was made up to 3 mL with distilled water. They were stored in 

dark for 30 min and absorbance was measured at 765 nm using a UV-visible spectrophotometer 

(Shimadzu UV 160). The phenolic content was calculated as gallic acid equivalents mg GAE g-1 

of dry flour. All assay determinations were carried out in duplicate. 

2.4.3 Trypsin inhibitor assay 

Trypsin inhibitor assay (TIA) was carried out using a colorimetric assay with a UV-visible 

spectrophotometer (Shimadzu UV 160) with slight modification (24, 25). Briefly, 0.25 g of raw/ 

fermented sample was placed in a 50-mL centrifuge tube and 25 mL of 0.01 M NaOH was 

added. Tubes were then vortexed for 1 min and stirred on a mechanical stirrer at 500 rpm for 3 h. 

The mixture was centrifuged (Thermo Sorvall legend XT, Thermo Fisher Scientific, MA, USA) 
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at 14000 x g for 10 min at 4°C. One mL of supernatant was used for TIA assay where 2 mL of 

BAPA and 0.5 mL of trypsin were also added and mixed. The reaction was stopped by adding 1 

mL of acetic acid after 10 min. The absorbance of the reaction mix was measured at 410 nm in a 

spectrophotometer (Shimadzu UV 160). One trypsin inhibitory unit (TIU) was equivalent to an 

increase of 0.01 absorbance unit at 410 nm per 10 mL of reaction mixture compared to the blank 

sample that had a trypsin solution added after acetic acid. TIA was defined as the number of 

trypsin units inhibited per mg of dry flours. 

2.4.4 In vitro protein digestibility of modified substrates 

The in vitro protein digestibility (IVPD) was evaluated based on a method described by  Akeson 

& Stahmann, (1964) (26) , with modifications (Almeida et a., 2015) (27). Briefly, 0.25 g of each 

raw/ fermented flour or 250 mL of deionized water (for the blank) was suspended in 15 mL of 

0.1 N HCl containing 1.5 mg/mL pepsin and incubated for 3 h at 37ºC in a water bath. The 

pepsin hydrolysis was neutralized with the addition of 7.5 mL of 0.5 N of NaOH. Then, the 

pancreatic digestion was started with the addition of 10 mL of 0.2 mol/L phosphate buffer (pH 

8.0), containing 10 mg of pancreatin with 1 mL of 0.005 mol/L sodium azide and incubated at 

37ºC overnight. After the pancreatic digestion, 1 mL of 10 g/100 mL of trichloroacetic acid 

(TCA) was added, followed by centrifugation at 503 x g for 20 min. The supernatant was 

collected, and the total protein content was estimated by BCA (Bicinchoninic acid) assay. The 

IVPD values were calculated according to the equation: 

% Digestibility = (Ns-Nb)/Ns * 100 

Where, Ns and Nb represent the nitrogen content in supernatants of the sample and the blank, 

respectively. 

2.4.5 Phytic acid determination 
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Phytic acid was determined using the method of  Gao et al. (2007) (28). Samples of 500 mg 

fermented modified flours were mixed with 10 mL of 2.4% HCl, mixed for 16 h, and then 

centrifuged at 2000 x g and 10ºC for 20 min. The supernatants were transferred to 14 mL Falcon 

tubes containing 1 g NaCl, shaken at 350 rpm for 20 min to dissolve the salt, and were settled at 

4°C for 60 min. The mixtures were centrifuged at 2000 x g and 10ºC for 20 min, and clear NaCl 

treated supernatants were collected for color development. This treatment precipitated matrix 

components that could interfere with the colorimetric reaction. The clear supernatant (1 mL) was 

diluted 25-fold by mixing with 24 mL of distilled water. Three milliliters of this diluted sample 

were combined with 1 mL of modified Wade reagent (0.03% FeCl3∙6H2O + 0.3% sulfosalicylic 

acid), vortexed, and centrifuged at 2000 x g at 10°C for 10 min. A series of calibration standards 

containing 0, 0.224, 0.448, 0.896, and 1.12 µg/mL PA-P (phytic acid phosphorous) were 

prepared from phytic acid dodeca-sodium salt hydrate the phosphorous content of which was 

determined as 20.11%. The absorbance of color reaction products for both samples and standards 

were read at 500 nm and phytic acid was expressed as g kg-1 of flour. 

2.4.6 Amino acid composition 

Analyses of amino acids were performed using the EZ:FaastTM kit (Phenomenex, Torrance, CA, 

USA) (29). Around 200 mg of each protein sample (control and modified) were taken, added to 

100 µL of 0.2 mM norvaline internal standard, and dried in a Speed Vac concentrator (Savant 

SVC-100H, Farmingdale, NY, USA) overnight in pyrolyzed tubes. Acid hydrolysis was 

performed in the Pico-Tag workstation (Waters Corporation, Milford, MA, USA) following the 

protocols (30). Twenty-five microliters of EDTA (1 μL of 20 % EDTA to 9 μL of water) were 

added to the hydrolyzed sample in the tube. Four hundred microliters of extraction buffer (water: 

chloroform: methanol; 3:5:12 v/v) were added to each of the tubes and supernatant was 
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transferred to GC-MS vial. The extraction was done one more time with 400 μL of extraction 

buffer and extracts were pooled. Three hundred fifty microliters of chloroform and 450 μL of 

distilled water were added; the mixture was vortexed and then allowed to settle until clear 

separation was seen. The upper water-methanol phase, which contains the amino acids, was 

transferred to a new tube and used in EZ: FaastTM extraction kit. The amino acids were analyzed 

by following the protocols described in EZ: FaastTM user’s manual. The amino acid composition 

was determined by GC/MS (GC-MS Agilent 5937, Palo Alto, CA, USA) using internal standard 

Norvaline. 

2.4.7 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein solutions extracted from the physically processed and fermented substrates were 

subjected to SDS-PAGE with slight modification (31). Two types of gel, 13% resolution gel 

(Acryl-bisacrylamide) at the bottom, and 4% percent stacking gel at the top were prepared. The 

protein concentration of 1.5 mg/mL was prepared in sample buffer (15.1 g/L Tris, 300 g/L urea, 

2 g/L SDS, 20 mL/L glycerol, and 0.1 g/L bromophenol blue) and incubated at 80°C for 5 min. 

The protein standard (6,500 – 66,000 Da, Product number M3913-SigmaMarker™) and 

physically processed/ fermented samples were loaded onto gel at equal volume (15 µL) and 

electrophoresed at a constant voltage of 200V for 50 min using standard SDS buffer (25mM Tris, 

191 mM glycine and 1 g SDS per L). The gels were stained with Coomassie blue for 1 h and de-

stained with methanol: acetic acid: deionized water in ratio 10:2:8 until the gels were clear and 

transparent. 

2.4.8 Statistical analyses 

The experimental design was a randomized complete block design (RCBD) with two 

replications. Statistical analyses were performed using the JMP® statistical methods (100 SAS 
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Campus Drive, Cary, NC). Two-way analysis of variance (ANOVA) and Tukey tests was 

performed to assess the effect of physical modification/fermentation. Treatment means were 

compared within each substrate. Results having different superscript letters within each substrate 

group show a significant difference (p < 0.05). Graphs were prepared using GraphPad Prism 

software (GraphPad Software, San Diego, CA, USA). 

3. Results and discussion 

3.1 Microorganism growth performance on modified substrates 

The viable microbial population and change in pH during fermentation of modified substrates by 

L. plantarum and P. acidilactici are presented in Figures 2 and 3, respectively. The exponential 

growth for L. plantarum for all the precooked and raw substrates was observed between 6 and 24 

h, except for precooked green pea flour for which it was 6-48 h. Similarly, the exponential 

growth of L. plantarum for sonicated substrates was observed between 6 and 48 h (Figure 2A). 

The pH was adjusted initially to 6.5 before fermentation as it was an optimal pH for microbial 

growth. The pH decreased significantly during the first 24 h fermentation for L. plantarum as the 

microbial population was the highest during this time (Figure 2B). After 24 h, the pH slightly 

increased to a pH range of 4.2- 4.8. For P. acidilactici, the exponential growth was observed 

between 6 and 24 h for all physically processed flours (Figure 3A). The pH decreased 

significantly during the first 24 h fermentation for P. acidilactici, as the microbial population 

was the highest during this time (Figure 3B). As the microorganism used were facultative hetero-

fermentative, there is a production of lactic acid as well as acetic acid which reduces the pH. 

The specific growth rates (µ), and population doubling times (td = 0.693/µ) for L. plantarum 

and P. acidilactici for physically modified substrates are presented in Table 2. L. plantarum had 

the highest growth rates on 2- and 4-min sonicated soybean flours at 0.95 ± 0.03 h-1 and 0.76 ± 
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0.02 h-1 respectively, compared to unsonicated flour, followed by precooked green pea, 

precooked lentil, unsonicated lentil, and unsonicated green pea. Similarly, P. acidilactici had the 

highest growth rate of 0.78 ± 0.05 h-1, 0.77 ± 0.03 h-1, 0.77±0.03 h-1, and 0.76±0.20 h-1 for 2 min 

sonicated lentil, precooked lentil, 4 min, and 2 min sonicated soybean flour, followed by 4 min 

sonicated lentil, respectively. Compared to L. plantarum, P. acidilactici had a lower population 

doubling time for most of the substrate, resulting in the highest growth rate. 

3.2 Impact of fermentation on modified flours 

3.2.1 Proximate composition of modified flours 

The proximate composition of the initial substrate before fermentation is given in Table 1. 

Uncooked and precooked green peas had similar amounts of protein, ash, carbohydrates, 

moisture, and fat. Proteins and carbohydrates in physically modified/ fermented soybean were in 

the range of 570-580 g kg-1and 310-330 g kg-1 dry flour, respectively, which are comparable to 

those reported by (Byanju et al., 2020) (32). Proteins and carbohydrates in physically modified 

and fermented green peas were in the range of 210-260 g kg-1 and 650-700 g kg-1, respectively, 

and are in close agreement with Millar et al. (2019) (33). Similarly, physically modified and 

fermented lentil and precooked lentil had 260-290 g kg-1 protein and around 620-660 g kg-1 

carbohydrate contents. The composition of lentil is comparable to the report by Han & Baik, 

(2008) (34). When these pulses were sonicated and fermented, there were no significant changes 

in proximate content, except for the ash content of soybean flour. 

3.2.2 In vitro protein digestibility 

In vitro protein digestibility (IVPD) of physically processed fermented substrates is presented in 

Figure 4. The protein digestibility of physically processed substrates fermented with L. 

plantarum and P. acidilactici was generally above 85%. Also, the IVPD was higher for 
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precooked lentil and green pea flours, compared to raw counterparts, possibly due to high 

temperature which causes denaturation of proteins as well as inactivation of enzyme inhibitors 

and other anti-nutritional factors (35). Similarly, the IVPD of raw green pea (89.12%), lentil 

(91.87%), and soybean (96.72%) from our research were higher than reported i.e. 82.60, 79, and 

71.80%, respectively (36), (37), which might be due to different processing conditions and cultivar. 

It could also be due to the autoclaving (121ºC, 30 min) before fermentation. Autoclaving 

potentially leads to a decrease in anti-nutritional factors and exposes protein to greater 

denaturation and enzymatic hydrolysis (38). The highest protein digestibility was seen in soybean, 

irrespective of the sonication and fermentation conditions. There was an increase in digestibility 

when unsonicated soybean flour was fermented with L. plantarum and P. acidilactici. When 

flours were sonicated for 2 min and 4 min, there was no significant change in protein 

digestibility of soybean flour. Also, there were no significant changes in protein digestibility for 

green pea and lentil when sonicated and fermented with L. plantarum and P. acidilactici. For 

green pea, there was a significant increase in IVPD when substrates were precooked and 

fermented (Figure 4, middle). Similarly, IVPD improved for lentil when it was precooked 

(Figure 4, bottom). Ogodo et al. (2018) (13) reported an increase in IVPD of soybean meal 

fermented with lactic acid bacteria (LAB) consortium from 85% to 93.5% which was due to the 

pH reduction, thus enhancing proteolytic enzyme activity and breaking proteins into small 

peptides. 

3.2.3 Total phenolic content 

The total phenolic contents for raw, modified, and fermented soybean, green pea, and lentil are 

given in Table 3. The highest phenolic content was observed in raw soybean flour (4.6 ± 0.22 mg 

GAE g-1). After soybean flours were sonicated (2 and 4 min) and fermented with L. plantarum, 
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and P. acidilactici, there was a significant decrease in phenolic contents. Georgetti et al. (2009) 

(39) and Juan & Chou. (2010) (40) have reported the total phenolic contents of 15.4 mg GAE g-1 

and 15.94 mg GAE g-1 for soybean flour, which is higher than what we obtained. The reduced 

phenolic content we observed is likely due to the thermal treatment before fermentation. Xu & 

Chang, (2008) (41) reported total phenolic content of pressure boiled (15 psi, 15 min) green pea 

(0.66 mg GAE g-1) that is lower than our values (Table 3). Torino et al. (2013) (14) also reported 

the higher total phenolic content for lentil (32 mg GAE g-1) compared to our results, i.e. 1.9 mg 

GAE g-1 . Green pea and lentil flours when sonicated and fermented also showed a significant 

decrease in phenolic contents irrespective of microorganisms used. The precooked green pea and 

lentil also showed the same decreasing trend when fermented. Chi & Cho. (2016) (42) also 

reported the decrease in total phenolic contents when soybean meal was fermented with L. 

plantarum and L. acidophilus, which was reportedly due to lower pH activity. The decrease in 

phenolic compounds during fermentation might also be due to lower pH (acidic environment), 

which results in abstraction of hydride and rearrangement of the structure of phenolic 

compounds (43), hence, unable to be detected by Folin-Ciocalteu reagents. This loss of phenolic 

compounds can be attributed to the chemical transformation, formation of protein-phenolic 

complex, and decomposition during thermal treatments (44). 

3.2.4 Trypsin inhibitor activity 

Trypsin inhibitors are proteins and are considered ANFs, as they hinder pancreatic protease 

activity and absorption of dietary proteins. TIA, expressed as the trypsin unit inhibited in a dry 

sample, was lower for most of the physically processed fermented soybean, green pea, and lentil 

flour (Figure 5). For unsonicated soybean, fermentation by L. plantarum did not significantly 

reduce TIA; on the other hand, TIA was reduced significantly by 49.8% and 52.7% when 

This article is protected by copyright. All rights reserved.



www.manaraa.com

sonicated for 2 min and 4 min, respectively, and fermented by L. plantarum. Similarly, 

fermentation alone of unsonicated soybean by P. acidilactici did not reduce TIA significantly (p 

> 0.05) but reduced the value by 34.5% and 46.7% when sonicated for 2 min and 4 min, 

respectively. 

 For unsonicated green peas, fermentation with L. plantarum significantly reduced TIA by 

47.3% compared to the raw sample, while sonication pretreatment for 2- and 4-min. reduced TIA 

by 48.1 and 48.9% when fermented by L. plantarum. Similarly, fermentation of unsonicated 

green pea by P. acidilactici reduced TIA significantly by 46.9%, and the combination with 

sonication for 2 min and 4 min reduced TIA further by 48.9% and 46.9%, respectively. The 

reduction of TIA for precooked green pea was 78% when compared to its raw counterpart. 

Çabuk et al. (25) also reported the decrease in TIA when pea protein concentrate was fermented 

by L. plantarum. This reduction of TIA was due to heat treatment as well as fermentation, which 

degrades or modifies trypsin inhibitors resulting in losing its activity to bind to trypsin (45). The 

highest reduction, 83%, was seen in precooked green pea followed by fermentation with L. 

plantarum or P. acidilactici. 

 For unsonicated lentil, fermentation with L. plantarum and P. acidilactici did not 

significantly reduce the TIA. When lentil was sonicated for 2 min or 4 min, and then fermented 

by L. plantarum, the TIA was reduced significantly by 21.9 and 24.4%, respectively, compared 

to raw lentil. Also, TIA was reduced by 21.4 and 27.6% when sonicated for 2 and 4 min and 

fermented by P. acidilactici. Precooked lentil followed by fermentation using L. plantarum and 

P. acidilactici showed the highest reductions, i.e. 80.6 and 91.6%, respectively. Physical 

processing and subsequent fermentation by these probiotic microbes reduced the trypsin inhibitor 

activity and enhanced the nutritional profiles of these substrates. 
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3.2.5 Phytic acid  

Table 4 shows the phytic acid (PA) content of raw, physically processed, and fermented 

substrates. The phytic acid content of soybean flour was the highest among all substrates, 

particularly with raw flour at 0.41 g kg-1. Ojokoh & Yimin. (2011) (46) and Shi et al. (2018) (47) 

reported phytic acid content of around 2.75 g kg-1 to 22.9 g kg-1 for soybean meal, which is 

higher than that obtained in our results (Table 4). Compared to 2 min sonication, 4 min 

sonication significantly reduced the phytic acid in soybean flour fermented by L. plantarum and 

P. acidilactici (by 42 and 41%, respectively). During fermentation, phytases are produced, which 

catalyzes the conversion of phytate to inorganic orthophosphate, thus reducing the phytic acid 

content as was observed during physical processing and fermentation of soybean flour (48). 

 The phytic acid content of raw green pea has been reported in the range of 0.54 g kg-1 to 

0.85 g kg-1 (33,49). The lower PA content compared to the literature was due to the autoclaving 

process, as PA is heat-labile and forms insoluble complexes. For uncooked and precooked green 

pea flour, there was only a minor reduction in PA content when physically processed and 

fermented. For lentil, phytic acid content was reported in the range of 8.6-17.1 g kg-1 for various 

cultivar (49). Phytic acid content was reduced greatly in unsonicated lentil, from 0.07 g kg-1 (raw) 

to ~0 g kg-1 and 0.03 g kg-1, when fermented by L. plantarum and P. acidilactici, respectively, 

compared with that of the sonicated then fermented samples. Also, 2 min sonication and 

fermentation were optimal for reducing phytic acid in lentil. For precooked and then fermented 

lentil, both microorganisms were able to reduce the phytic acid contents significantly. 

The lower values for fermented samples could be attributed to all the substrates being autoclaved 

for 30 min at 121ºC prior to fermentation and PA assays. Avanza et al. (2013) (50) and Khattab et 

al. (2009) (3) reported that phytic acid is heat-labile and it forms insoluble complexes between 
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phytate and other components like calcium and magnesium, thus decreasing the phytic acid 

content. Sonication followed by fermentation was effective in reducing the phytic acid content 

for soybean flour. 

3.2.6 Amino acid composition of fermented flours 

Amino acid (AA) composition of physically processed fermented flours of soybean, green pea, 

and lentil are presented in Tables 5, 6, and 7 respectively. Phenylalanine (Phe), leucine (Leu), 

and isoleucine (Ile) were the predominant essential amino acids (EAA) in soybean flour (control) 

(Table 5), whereas, proline (Pro), alanine (Ala), aspartic acid (Asp), and glutamic acid (Glu) 

were the major non-essential amino acids (NEAA). L. plantarum fermentation of soybean flour 

led to increases in Leu, Asp, and Pro, but decreased lysine (Lys), Ala, Glu, glycine (Gly), serine 

(Ser), and tyrosine (Tyr). Fermentation generally increased AA contents, especially when P. 

acidilactici was used. Similarly, when 4 min sonicated soybean flour was fermented by L. 

plantarum, AA contents increased; however, NEAAs and EAAs both improved when fermented 

by P. acidilactici. All the AAs in soybean meal were reported to increase when fermented by 

Bacillus natto (46) which was also the case for our studies when soybean flours were fermented, 

presumably due to the hydrolysis of proteins into shorter peptides and eventually to AA. 

For green peas (Table 6), the most dominant AA was Phe, Asp, Glu, and Leu, while lower AA 

concentrations were observed for Lys, Thr, Ala, and Gly. Methionine (Met), cysteine (Cys), 

histidine (His), Ser, and Tyr were not detected in physically modified and fermented green pea 

(51), (3). Compared with unfermented (control) green peas, precooked as well as fermented green 

peas showed lower EAA and NEAA contents, which might be due to the non-enzymatic 

browning reactions as well as heat pretreatment (47). When green pea flours were fermented by L. 

plantarum, all AAs decreased. When 2 min sonicated green pea flour was fermented by L. 
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plantarum, Ile, and Val increased while other AAs decreased or remain unchanged. When 4 min 

sonicated green pea was fermented by L. plantarum, Pro increased while the rest remained 

unchanged. When green peas were fermented by P. acidilactici, most of the AA increased and 

any reductions were not to a drastic extent as noted with L. plantarum. Sonicating green peas for 

2 and 4 min and then being fermented by P. acidilactici decreased all the AA. Precooking 

reduced the AA content in green peas. Fermentation with L. plantarum as well as P. acidilactici 

did not have notable benefits based on decreased AA contents. Threonine was most detrimentally 

affected as its amount decreased with sonication and fermentation, which may be due to the 

threonine aldolase enzyme that converts threonine into acetaldehyde that gives fermented aroma 

(52). 

For lentil control (Table 7), Leu, Pro, Phe, and Ile were the dominant AAs, which to 

some extent, aligns with what was reported by Boye et al., (2010) (53). Cys, Met, Ser, Tyr were 

not detected in unfermented as well as physically modified and fermented lentils. All the AA 

tended to decrease when lentil flour was fermented by L. plantarum. When 2 min sonicated lentil 

flour was fermented by L. plantarum, all the AA decreased except for Val and Gly. Similar 

results were noted for 4 min sonicated and L. plantarum fermented lentil flour, except for 

aspartic and glutamic acids which increased. Two-minute sonication and fermentation with P. 

acidilactici was beneficial for lentil flours when compared to 4 min as most of the AA increased. 

Pre-cooking also reduced the AA contents compared with uncooked lentils. Fermentation of 

precooked lentil by L. plantarum and P. acidilactici improved the contents of AAs relative to 

values obtained from precooked controls alone. 

The increase in AA content may be due to the degradation of complex protein by bacteria 

or microbial metabolism during fermentation which releases peptides and amino acids (12,54). 
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Aminopeptidases are reported to be produced by LAB strains during fermentation (55). The 

release of AA from proteins relies heavily on the action of aminopeptidases that are responsible 

for the cleavage of AA from the N-terminus of peptides to liberate free AA. Serine was reduced 

or even not detected in soybean, green pea, and lentil which might be due to the action of serine 

dehydratase responsible for the deamination of serine into ammonia and pyruvate and ultimately 

to organic acids (56). In general, AA is generated during fermentation through biodegradation 

pathways involving extracellular proteolysis of proteins by proteolytic enzymes or intracellular 

biosynthetic pathways involving biosynthesis from AA precursors. Therefore, fermentation of 

these substrates using L. plantarum and P. acidilactici may have followed such a pathway that 

may explain the increase or reduction in AA content (56). 

3.2.7 SDS-PAGE 

Figure 6 presents the electrophoretic pattern of protein subunits obtained from green pea, lentil, 

and soybean. In unmodified (raw) substrates (lanes A1, B1, and C1), and precooked substrate 

(lane A6 and B6), there were high molecular weight (MW) bands as well as higher intensity 

(darker in color) at MW>36 kDa. Similarly, physical processing and then fermentation by L. 

plantarum and P. acidilactici led to considerable protein modification in all substrates, as 

indicated by the reduced band intensity (lighter in color) (green pea: A2-A5, A7-A8, lentil: B2-

B5, B7-B8, soybean: C2-C5). This is possibly due to extensive proteolytic activity on the protein 

during fermentation, as was reported by Di Stefano et al. (2019) (57); green lentils and yellow pea 

fermented with L. plantarum had decreased subunit band intensity due to proteolytic hydrolysis 

of proteins resulting in fractions with MW < 10 kDa. Kiers et al. (2000) (58) also fermented 

soybean with Bacillus subtilis and reported that the protein bands virtually disappeared after 
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fermentation. Such alteration in protein subunits could be expected to result in varying degree of 

functional characteristics in legume flours/ ingredients that require further research. 

4. Conclusions 

Both modified and unmodified soybean flour, green pea flour, and lentil flour supported the 

growth of L. plantarum and P. acidilactici. The fermentation of this physically processed legume 

and pulse flours influenced the non-nutritive compounds. The phytic acid contents were 

significantly reduced for soybean flour when sonicated. Also, phytic acid was generally reduced 

with the fermentation of physically modified lentil. Similarly, trypsin inhibitors were also 

reduced for most of the physically processed and fermented substrates. Total phenolic content 

was reduced significantly when physically processed substrates were fermented. Physical 

modification along with fermentation did not affect the protein digestibility for nearly all the 

substrates. Only the precooked green peas improved protein digestibility from physical 

modification and fermentation, which is beneficial to green pea utilization. This study 

demonstrated the impact of physical modification such as sonication/precooking on the 

fermentation performance of some pulse-based ingredients, leading to reduction in many anti-

nutritional compounds and enhanced nutritional quality. 
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Table 1 Proximate composition of plant substrate before (control) and after physical modification 

Substrate Treatment % Moisture  Protein (DB) 
(g kg-1) 

Fat (DB) 
(g kg-1) 

Ash (DB) 
(g kg-1) 

Fiber (DB) 
(g kg-1) 

Carbohy
drate 
(DB (g 
kg-1) 

 
 
 
 
 
 
 
 
Green Pea 

Control 4.60 ± 0.56a 225.7 ± 7.5abc 4.3 ± 4.0a 29.7 ± 3.0ab 65.1 ± 4.3ab 

675.2a 

LP 5.04 ± 0.21a 221.5 ± 1.8bc 6.5 ± 1.3a 32.8 ± 2.9a 64.0 ± 4.1ab 

675.2a 
LP (2 min) 5.97 ± 0.77a 219.1 ± 15.4bc 2.8 ± 0.6a 30.6 ± 0.2ab 69.6 ± 5.6a 

677.9a 
LP (4 min) 6.55 ± 0.28a 224.4 ± 3.6abc 1.4 ± 1.9a 30.8 ± 0.5ab 64.4 ± 3.3ab 

679.0a 
PA 5.40 ± 0.14a 218.7 ± 9.0ab 5.7 ± 1.5a 28.0 ± 0.5ab 63.8 ± 2.6ab 

683.8a 
PA (2 min) 4.69 ± 0.36a 211.8 ± 6.6c 4.1 ± 0.8a 26.9 ± 1.2ab 63.8 ± 4.8ab 

693.4a 
PA (4 min) 6.80 ± 1.09a 224.3 ± 5.4abc 1.9 ± 0.0a 24.9 ± 0.6b 63.0 ± 0.0ab 

685.9a 
 
 
Precooked 
Green Pea 

Control 6.22 ± 0.90a 255.9 ± 0.4a 9.9 ± 6.9a 27.4 ± 0.1ab 50.0 ± 8.3bc 

656.8a 
LP 6.00 ± 0.23a 236.0 ± 16.3abc 6.4 ± 0.5a 28.3 ± 2.1ab 35.7 ± 0.4cd 

693.6a 
PA 5.13 ± 0.33a 251.7 ± 1.8ab 8.5 ± 0.2a 27.6 ± 0.8ab 33.0 ± 1.3d 

679.2a 
 
 
 
 
 
 
Lentil 

Control 3.97 ± 0.12a 270.1 ± 2.2a 3.7 ± 0.8a 27.5 ± 0.1a 41.1 ± 0.1a 
657.6a 

LP 4.51 ± 0.28a 269.3 ± 7.7a 7.8 ± 1.7a 28.2 ± 0.7a 37.9 ± 0.0a 
656.8a 

LP (2 min) 4.32 ± 0.45a 269.2 ± 14.2a 1.2 ± 3.4a 30.7 ± 0.1a 41.7 ± 2.1a 
657.2a 

LP (4 min) 4.40 ± 0.22a 268.4 ± 4.5a 0.6 ± 0.6a 29.6 ± 0.6a 37.9 ± 1.9a 
663.5a 

PA 4.36 ± 0.96a 267.2 ± 9.3a 5.1 ± 0.4a 27.9 ± 2.6a 40.6 ± 1.0a 
659.2a 

PA (2 min) 3.49 ± 0.06a 270.7 ± 9.3a 0.8 ± 0.3a 27.2 ± 0.7a 38.6 ± 0.3a 
662.7a 

PA (4 min) 3.48 ± 0.01a 265.8 ± 6.9a 2.2 ± 1.3a 25.8 ± 0.2a 37.4 ± 0.2a 
668.8a 

 
 
Precooked 
Lentil 

Control 5.25 ± 0.21a 291.9 ± 5.8a 7.6 ± 4.3a 29.4 ± 1.9a 46.1 ± 4.3 a 
625.0a 

LP 3.37 ± 0.12a 272.0 ± 6.5a 3.3 ± 0.3a 30.6 ± 0.2a 38.2 ± 1.0a 
655.9a 

PA 6.08 ± 0.29a 274.5 ± 4.1a 3.7 ± 0.8a 28.5 ± 1.5a 39.1 ± 3.6a 
654.2a 

 
 
 
 
 
 
Soy flour 

Control 3.39 ± 0.22a 584.8 ± 6.8a 1.7 ± 2.1a 65.7 ± 0.4d 28.7 ± 7.2a 

319.1a 
LP 4.45 ± 0.20a 588.0 ± 5.8a 4.1 ± 2.5a 68.1 ± 0.0bc 25.5 ± 0.1a 

314.3a 
LP (2 min) 3.37 ± 0.17a 584.7 ± 14.5a 5.0 ± 3.1a 70.2 ± 0.8a 26.8 ± 3.4a 

313.3a 
LP (4 min) 4.38 ± 0.04a 587.0 ± 3.0a 2.5 ± 1.8a 68.8 ± 0.1ab 26.3 ± 2.1a 

315.4a 
PA 5.56 ± 0.80a 576.0 ± 4.0a 2.6 ± 2.0a 67.0 ± 0.3cd 24.3 ± 0.1a 

330.1a 
PA (2 min) 3.67 ± 0.02a 578.4 ± 2.2a 6.3 ± 1.3a 67.3 ± 0.2c 31.9 ± 1.6a 

316.1a 
PA (4 min) 3.69 ± 1.86a 589.0 ± 10.0a 2.8 ± 3.3a 67.0 ± 0.5cd 28.1 ± 3.9a 313.1a 
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Abbreviations: LP: Lactobacillus plantarum; PA: Pediococcus acidilactici; LP (2 min): Sonicated for 2 
min and fermented by LP; LP (4 min): Sonicated for 4 min and fermented by LP; PA (2 min): Sonicated 
for 2 min and fermented by PA; PA (4 min): Sonicated for 4 min and fermented by PA 

Values are mean ± standard deviations (n=2). Results having different superscript letters within each 
substrate are significantly different (p < 0.05) as determined by Tukey’s test. 
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Table 2 Specific growth rates (μ), and doubling time (td) for microorganisms used to ferment 
physically processed substrates 

 

Microorganism Substrate Sonication 
time (min) 

μ (h-1) td (h) 

  0 0.70 ± 0.03a  1.00 ± 0.04 
 
 
 
 
 

L. plantarum 

Green Pea 2  0.34 ± 0.01b 2.07 ± 0.05 
 4 0.28 ± 0.01b 2.46 ± 0.09 

Precooked Green Pea 0 0.72 ± 0.02a  0.96 ± 0.02 
 0 0.71 ± 0.03a 0.97 ± 0.05 

Lentil 2 0.64 ± 0.03a 1.08 ± 0.05 
 4 0.49 ± 0.04b 1.42 ± 0.12 

Precooked Lentil 0 0.73 ± 0.01a  0.95 ± 0.01 
 0 0.67 ± 0.03 a 1.03 ± 0.04 

Soybean 2 0.95 ± 0.03b 0.73 ± 0.03 
 4 0.76 ± 0.02a 0.91 ± 0.02 

  0 0.70 ± 0.01a 0.99 ± 0.02 
 
 
 
 
 

P. acidilactici 

Green Pea 2  0.75 ± 0.00b 0.92 ± 0.00 
 4 0.76 ± 0.00b 0.91 ± 0.00 

Precooked Green Pea 0 0.64 ± 0.01c  1.08 ± 0.02 
 0 0.71 ± 0.03a 0.97 ± 0.05 

Lentil 2 0.78 ± 0.05a 0.92 ± 0.00 
 4 0.76 ± 0.00a 0.91 ± 0.00 

Precooked Lentil 0 0.77 ± 0.03a  0.90 ± 0.04 
 0 0.70 ± 0.06a 0.99 ± 0.09 

Soybean 2 0.76 ± 0.02a 0.91 ± 0.02 
 4 0.77 ± 0.03a 0.91 ± 0.04 

 

Values are mean ± standard deviations (n=2). Results having different superscript letters within each 
substrate are significantly different (p < 0.05) as determined by Tukey’s test. 
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Table 3 Total phenolic compounds of physically processed fermented substrate 

 

Substrates Sonication time 
(min) 

Microbes for 
fermentation 

TPC (mg GAE g-1) 

 
 
 

Soybean 

Raw None  4.60 ± 0.22 a 

0  
L. plantarum 

2.80 ± 0.14 b 
2 2.65 ± 0.46 b 

4 2.38 ± 0.54 b 

0  
P. acidilactici 

2.71 ± 0.31 b 

2 3.19 ± 0.14 ab 

4 2.75 ± 0.61 b 

 
 
 

Green pea 

Raw None  1.81 ± 0.32 a 

0  
L. plantarum 

0.70 ± 0.12 b 

2 0.49 ± 0.04 bcd 

4 0.21 ± 0.18 bcd 

0  
P. acidilactici 

0.58 ± 0.11 bc 

2 0.10 ± 0.05 cd 

4 0.01 ± 0.01 d 

 
Precooked Green Pea 

Raw None  1.75 ± 0.02 a 

0 L. plantarum 0.71 ± 0.07 b 

0 P. acidilactici 0.58 ± 0.04 bc 

 
 
 

Lentil 

Raw None  1.90 ± 0.09 a 

0  
L. plantarum 

1.61 ± 0.01 ab 

2 1.09 ± 0.01 bcd 

4 0.52 ± 0.17 d 

0  
P. acidilactici 

1.45 ± 0.45 abc 

2 0.94 ± 0.10 cd 

4 0.59 ± 0.13 d 

 
Precooked Lentil 

Raw None  1.69 ± 0.01 ab 

0 L. plantarum 0.66 ± 0.03 d 

0 P. acidilactici 0.66 ± 0.16 cd 

 

Values are mean ± standard deviations (n=2). Results having different superscript letters within each 
substrate are significantly different (p < 0.05) as determined by Tukey’s test. 
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Table 4 Phytic acid content of physically processed fermented substrates 

 

Substrates Sonication time 
(min) 

Microbes for 
fermentation 

Phytic acid content  
(g kg-1) 

 
 
 

Soybean 

Raw None  0.41 ± 0.01 a 
0  

L. plantarum 
0.36 ± 0.00a ab 

2 0.33 ± 0.02 b 
4 0.29 ± 0.01 b 
0  

P. acidilactici 
0.31 ± 0.01 b 

2 0.34 ± 0.02 b 

4 0.29 ± 0.03 b 

 
 
 

Green pea 

Raw None  0.03 ± 0.00 a 

0  
L. plantarum 

0.02 ± 0.01 a 

2 0.02 ± 0.02 a 

4 0.01 ± 0.01 a 

0  
P. acidilactici 

0.03 ± 0.00 a 

2 0.02 ± 0.01 a 

4 0.02 ± 0.01 a 

 
Precooked Green Pea 

Raw None  0.03 ± 0.01 a 

0 L. plantarum 0.02 ± 0.01 a 

0 P. acidilactici 0.01 ± 0.01 a 

 
 
 

Lentil 

Raw None  0.07 ± 0.02 ab 

0  
L. plantarum 

0.01 ± 0.01 d 

2 0.04 ± 0.01 bcd 

4 0.07 ± 0.02 ab 

0  
P. acidilactici 

0.03 ± 0.01 bcd 

2 0.03 ± 0.00 cd 

4 0.05 ± 0.02 abc 

 
Precooked Lentil 

Raw None 0.08 ± 0.00 a 

0 L. plantarum 0.05 ± 0.01 abcd 

0 P. acidilactici 0.01 ± 0.00 cd 

 

Values are mean ± standard deviations (n=2). Results having different superscript letters within each 
substrate are significantly different (p < 0.05) as determined by Tukey’s test. 

This article is protected by copyright. All rights reserved.



www.manaraa.com

Table 5 Amino acid composition (μmole/mg) of physically processed fermented soybean 

 
Treatment 

Essential amino acid (μmole/mg) Non-essential amino acid (μmole/mg) 
 

Ile Leu Lys Phe Thr Val Met Ala Asp Glu Gly Pro Ser Tyr 

Control 147±4bcd 219±3c 31±5cd 223±10cd 70±3a  152±9ab 24±3b 108±8cd 102±4d 101± 9d 99±4cd 177±6d 50±2a 27±2b 

LP 194±24 

ab 
272±2b ND 238±10c 56±7a 155±1ab 28±5b 68±0e 148±0c 69± 5e 42±7e 234±20bc ND ND 

LP-2 min 143±9cd 345±19a 72±11a 307±8a 8±1b  164±5a 22±7b 80±2de 122±12cd 168±6abc 72±8de 216±10cd ND 53±7a 

LP-4 min 231±14a 305±12ab 42±9bcd 333±4a 70±9a 98±12c 26±3b 156±6ab  240±5a 174±5ab 146±7ab 380±1a ND 33±1b 

PA 160±6bcd 225±6c 62±3ab 230±5c 64±8a 163±5a 32±7b 123±16bc 200± 17b 155±8bc 116±11bc 246±9bc 58±6a 62±3a 

PA-2 min 114 ±10d 154±19d 22±6d 200±1d 55±6a 115±19bc 93±11a 79±14de 197± 9b 143±11c 72±14de 179±21d ND 17±4bc 

PA-4 min 165±12bc 277±0ab 57±9abc 266±1b 60±8a 111±17bc 74±7a 161±5a 251±7a 191±6a 151±4a 279±15b 53±11a 30±8b 

 

Abbreviations: LP: Lactobacillus plantarum; PA: Pediococcus acidilactici; LP-2 min: Sonicated for 2 min and fermented by LP; LP-4 min: 
Sonicated for 4 min and fermented by LP; PA-2 min: Sonicated for 2 min and fermented by PA; PA-4 min: Sonicated for 4 min and fermented by 
PA. ND: Not detected 
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Table 6 Amino acid composition (μmole/mg) of physically processed fermented green pea flour 

Abbreviations: LP: Lactobacillus plantarum; PA: Pediococcus acidilactici; LP-2 min: Sonicated for 2 min and fermented by LP; LP-4 min: 
Sonicated for 4 min and fermented by LP; PA-2 min: Sonicated for 2 min and fermented by PA; PA-4 min: Sonicated for 4 min and fermented by 
PA. ND: Not detected 

 

 

Treatment 
Essential amino acid (μmole/mg) Non-essential amino acid (μmole/mg) 

Ile Leu Lys Phe Thr Val Met Ala Asp Glu Gly Pro Ser Tyr 

Green pea 

Control  88±7bc 142±15
ab 24±9b 175±0ab 37±9a 88±7bcd ND 49±1abc 141±16ab 124±1

8a 59±3ab 135±8b ND ND 

LP 68±8cde 123±11
bc 24±5b 110±8c 19±4b 76±2bcd ND 48±6bc 119±12ab

c 
51±12c

d 55±5abc 97±10cd ND ND 

LP-2 min 127±13a 176±7a ND 160±9ab 10±1bc 166±21a ND 61±6ab 110±19bc

d 74±1bc 58±1abc 116±3bc ND ND 

LP-4 min 95±2b 134±6b 20±2b 183±2a 25±6ab 102±14b ND 46±3bc 154±5a 113±7a 47±6bc 172±1a ND ND 

PA 83±6bcd 133±4b 39±2a 154±13b 20±6b 97±9bc ND 75±17a 143±9ab 100±3a

b 72±14a 113±15b

c ND ND 

PA-2 min 62±1def 107±11
bcd ND 84±7cd ND 71±8bcd ND 32±5c 77±3d 43±8cd 38±5bcd 97±11cd ND ND 

PA-4 min 47±2ef 87±1cde ND 62±5de ND 49±2d ND 41±1bc 78±5d 69±1bc 44±1bc 60±3e ND ND 

Precooked green pea 

Control 42±2f 79±1de ND 55±6e ND 59±0cd ND 49±2abc 79±4cd 64±5c 34±1cd 65±8de ND ND 

LP 37±8f 70±14e ND 47±8e ND 71±10bc

d ND 35±5c 73±11d 32±2d 18±5d 67±9de ND ND 

PA 48±2ef 92±7cde ND 50±1e ND 66±6bcd ND 38±4bc 71±3d 49±5cd 39±8bcd 59±5e ND ND 
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Table 7 Amino acid composition (μmole/mg) of physically processed fermented lentil 

Abbreviations: LP: Lactobacillus plantarum; PA: Pediococcus acidilactici; LP-2 min: Sonicated for 2 min and fermented by LP; LP-4 min: 
Sonicated for 4 min and fermented by LP; PA-2 min: Sonicated for 2 min and fermented by PA; PA-4 min: Sonicated for 4 min and fermented by 
PA. ND: Not detected  

Treatment Essential amino acid (μmole/mg) Non-essential amino acid (μmole/mg) 
 

Ile Leu Lys Phe Thr Val Met Ala Asp Glu Gly Pro Ser Tyr 
Lentil 

Control 106±1ab 145±10ab ND 108±21a ND 80±8abc ND 43±8ab 78±11abc 30±2c 47±1cd 128±6a ND ND 

LP 46±10c 106±7bcd ND 52±3bc ND 57±0cd ND 41±4ab 47±7bc 55±3abc 43±3cd 56±9c ND ND 

LP-2 min 84±7b 143±6ab ND 52±5bc ND 111±11a ND 29±4b 38±1c ND 76±4ab 82±1bc ND ND 

LP-4 min 49±15c 90±25cd ND 105±10a 15±4a 66±15bcd ND 60±10a 103±8ab 78±6a 39±9cd 75±18c ND ND 

PA 97±0ab 84±8d ND 48±12c ND 54±1cd ND 38±6ab 57±19bc 47±8bc 31±5d 58±4c ND ND 

PA-2 min 92±2ab 164±1a ND 104±15a ND 113±6a ND 54±4ab 125±13a 43±1bc 85±9a 110±8ab ND ND 

PA-4 min 49±2c 95±11cd 5±0b 91±21abc 22±8a 50±12cd ND 50±8ab 118±4a 81±19a 44±7cd 68±3c ND ND 

Precooked lentil 

Control 46±7c 76±11d 14±4a 85±7abc ND 44±6d ND 42±9ab 103±9ab 69±3ab 25±5d 57±6c ND ND 

LP 119±5a 133±7abc ND 67±11abc ND 92±8ab ND 49±7ab 47±4bc 34±4c 47±5cd 58±3c ND ND 

PA 99±1ab 133±8abc ND 99±0ab ND 102±3a ND 43±5ab 117±5a 68±5ab 54±5bc 85±11bc ND ND 
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Figure 1 Conceptual framework: flour modification with two processing options and 
evaluation of resulting ingredients 
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Figure 2 Microbial viable population (A) and pH (B) of Lactobacillus plantarum for physically 
modified substrates 

Figure 3 Microbial viable population (A) and pH (B) of Pediococcus acidilactici for physically 
modified substrates 

A B 

A 
B 

This article is protected by copyright. All rights reserved.



www.manaraa.com

  

Figure 4 In vitro protein digestibility of physically modified fermented substrates: 
Top: Soybean; Middle: Green pea; Bottom: Lentil 
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Figure 5 Trypsin inhibitory activity of physically processed fermented substrates: 
Top: Soybean; Middle: Green pea; Bottom: Lentil 
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Figure 6 Gel electrophoresis of physically processed and 
fermented substrate. (A) Green pea, (B) Lentil, (C) Soybean 
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